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Nonlinear radiation pressure and stochasticity in ultraintense laser fields
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The drift acceleration due to radiation reaction for a single electron in an ultraintense plane avave (

=eE/mcw~1) of arbitrary wave form and polarization is calculated and shown to be proportioadinche

high-a limit. The resulting average drift acceleration is independent of polarization, even though the average
radiated power is polarization-dependent. The cyclotron motion of an electron in a constant magnetic field and
an ultraintense plane wave is numerically found to be quasiperiodic even in the Hiigiit-if the magnetic

field is not too strong, as suggested by previous analytical work. A strong magnetic field causes highly chaotic
electron motion and the boundary of the highly chaotic region of parameter space is determined numerically
and shown to agree with analytical predictiof81063-651X99)06102-4

PACS numbd(s): 52.40.Nk, 52.35.Mw

It has been known for many years that qualitative changethe averaging and determine the motion of electrons under
occur in the behavior of an electron moving in an electro-the (previously calculatedinstantaneous Lorentz-Dirac ra-
magnetic plane wave when the dimensionless strelagth diation force[4,5]. We give the restrictions on field strength
=eE/mcw is of order unity. Recent advances in laser pulseand frequency for our result to be applicable below.
compression and amplificatidd] have made it possible to The second part of this paper considers the destruction of
attain such ultraintense waves in the laboratory and led tthe enhanced-mass behavior and transition to stochasticity as
new investigations of their properties. One important effecthe strength of the background fields is increased to violate
is that an electron moving in an ultraintense electromagnetithe field-strength conditiore B,/ MCwye<1 Necessary
plane wave and also subjected to slowly varying “back-for the enhanced-mass derivation. The breakdown of the
ground” electric or magnetic fields behaves approximatelyenhanced-mass picture is shown numerically to predict the
like a particle of enhanced mass myy onset of stochasticity even for very strong wave intensity.
=my/1+e*(A,A*)/m?c* drifting in the background fields. Both the nonlinear radiation acceleration and the stochastic-
Here A is the vector potential angy= J1+a2/2 for a lin- ity are expected to be significant in astrophysical situations,
early polarized monochromatic wave. The fast motion in theand the first effect may well be visible in laboratory experi-
wave can be rigorously averaged over if the backgroundnents with ultraintense laser pulses.
fields are sufficiently weak and the plane wave is not so Classical calculations are valid for highas long as the
strong that pair creation effects become significant. Exceptiiscrete photon energyw<mc? and the amplitude for QED
for some brief remarks on collective behavior at the end, thigrocesses such as"e” pair creation is small §E4/mc
paper considers the behavior of a single electron. <md) [6]. The classical higla regime includes a number

This enhanced-mass approximation has a long history goof existing and proposed accelerator designs, such as the
ing back at least to the work of Volkof2]. In a previous plasma wakefield and beat-wave acceleraf@is and non-
paper its validity was shown for sufficiently weak and slowly linear multiphoton effects such as Compton-like scattering
varying background field¢énote that a slow change in the [8]. Lasers used in the National Ignition Facility and similar
wave envelope can be treated for this purpose as a “backnertial fusion projects hava~1 so strong-field effects are
ground field,” causing the standard longitudinal ponderomo-significant. Many astrophysical problems also involve hégh-
tive force on an oscillating electrpf3]. In the course of that radiation sources, and in particular consequences of strong-
derivation, general equations were found for the response ofave radiation damping are discussed9h
the electron guiding centdi.e., the center of the electron’s ~ The motion of an electron in a plane wave of arbitrary
fast motion in a harmonic way¢o an impulse. The first part intensity is integrable both classically and within the Dirac
of this paper uses the guiding-center equations to calculatequation. This occurs because a third conserved quantity
the drift acceleration of an electron in a plane wave due tancy— p, exists in addition to the two transverse generalized
the radiation damping and reaction forces. This results in aomenta. Herey is the electron Lorentz factor argj is the
generalization for strong classical waves of the accelerationomponent of electron momentum along the wave axis. In-
due to radiation damping. To our knowledge the correct aveluding radiative effects or adding additional fields generally
erage accleration of an electron in a strong wave due to raviolates this conservation. The result of the scattering of the
diation reaction has not previously been obtained. In a strongvave by the electron is a force on the electron along the
wave, the variation of the electron effective masy over ~ wave axis, which has the forfa=2e*(E?)/3m?c* for weak
the wave orbit must be properly accounted for to obtain theplane waves. In the high-regime the electron radiates much
correct drift acceleration. The average drift acceleration isnore strongly ¢a* rather thana? in the low-a limit) and
the quantity of greatest interest because experiments and asdiates high harmonics of the wave frequefi¢yb]. Some
trophysical phenomena typically involve many wave periodscare must be taken to calculate the radiation acceleration for
The guiding-center equations provide the tools to carry ou strong plane wave correctly, since the electron can have
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different y and hence different inertia at different times inits  The radiation reaction force from scattered photons
motion in the plane wave. Another way to understand this icauses the drift velocitythe velocity of the drift framgto
that the conservation of momentum along the wave axisgchange in time. The change in drift velocity for an applied
which is sulfficient to give the time-averaged acceleration foimpulse requires some calculati@8] which we will not re-
a weak wave(equal and opposite the averaged radiationpeat here: the idea is to consider the infinitesimal Lorentz
force), does not fix the acceleration for a strong wave be4ransformation required to restore the electron to its usual
cause the electron momentum along the wave axis in @oint on the wave trajectory. It turns out that unexpected
strong wave is not constant. It will be seen that naive conterms arise in the equation for the drift velocity, and that
servation of momentum is satisfied if a drifting electron isconsequently the instantaneous drift acceleration from an ap-
attributed average momentumygv 4, wheremy, is the en-  plied force is not necessarily in the direction of the applied
hanced mass angl is the drift velocity, assumed nonrela- force. For the radiation reaction problem in a weak wave, it
tivistic. is these terms which give the usual radiation force along the
Previous work on the acceleration due to radiation reacwave axis, even though the instantaneous radiation force is
tion in a strong wave has included numerical studiE®6] always perpendicular to the wave. The drift velocity compo-
as well as rather complicated exact solutions to the Lorentzaent along the wave axis changes for an applied fér¢m
Dirac equation(in the Landau approximatiof#]) in special  addition to the force from the wayeccording tq 3]
cases, such as monochromatic linearly and circularly polar-
ized waves[11]. For an extremely strong wave there are dog  Fx Fyoy, Fa, 2
well-known difficulties in treating the electron motion clas- dt  my mcy, mcy,’ @
sically, due to the existence of acausal “runaway” solutions
to the Lorentz-Dirac equation. The Landau approximation,The causality problems with the Lorentz-Dirac classical ra-
which is valid when the radiation reaction force is muchdiation force[6] do not appear in the Landau approximation,
smaller than the other forces on the electtas is the case Which is valid if the radiation force is a small perturbation on
for all currently available laser field strengthsonsists of the motion causing the radiation. The instantaneous radiation
calculating the radiation force from the instantaneous accelforce on the electron ig4,5]
eration in the absence of the radiation force. The work dis- 2 2 2 2
cussed here is independent of the various attempts to find a g 2e ( d( dpi) viy (‘;_p) _(d_dE) H
t cdt

consistent classical description of strong radiation reaction T3mc|dt| Vdt) mé

forces (see references if6]) when the Landau approxima-

tion is not valid. :29273 dzpi_vn’g[ dp 2 [dE\? @
For laser fields in the laboratory and in all but the most 3mc| d7? mczl dzy cdn '

exotic astrophysical situations, radiation reaction can be

treated as a perturbation and the Landau approximation igpon substituting Eq(3) into Eg. (2), we obtain the instan-
valid. In this regime, the guiding-center formalism gives ataneous acceleratiofwith respect to phagen the x direc-
simple result for the drift velocity, the quantity of primary tion,

interest, valid for an arbitrarily polarized, polychromatic

wave, even though the electron motion is highly relativistic. dog _ 2e?yo( dA\? 4
The two approximations involved are the Landau approxima- dp 3mc\dy )

tion and the guiding-center approximation that the changes

in the drift velocity over a single wave period are nonrela-Now the averaging ovey is simple. For a wave with inten-

tivistic and hence add linearly, which is very well satisfied sity per frequency intervdl(w), the result is

for the radiation reaction problem in the classical regime. . ,
The motion in a wave along with dimensionless vector d_vx :87Te J1(w) d‘*’\/ 4L9f l(w) do 5)

potential A(t—x/c)=A(7) is given in the “drift frame” dt 3m3c® m’c® 0’

where the electron has zero average velocity fy= o ) o
—mcA for the transverse components, apg=mc(A2 The acceleration is thus independent of polarization and the

—(A2))/2y,, with () indicating averaging over and yé phasing between different frequences, just as in the nonrela-

—1+(A?). There are several equivalent expressionsfr tVistic limit, but scales witha® rather thana? for large a

; i 2
for the electron trajectory in the wave with no external orWith @ constant, since thel(w)a®, .
radiative forces:y, is equal to the constant of motiop For a linearly polarized monochromatic wave, the average

H H 2 2(A~2 4
—p,/mcin the frame where the electron is at rest on aver2cceleration is &w“(a®/2+a’/4)J1+a /2_/3mé:;. 2F02r
age. Hencedp/dt=1—v,/c=1,/y in this frame, and the Circular__polarization, — the result is w*(a

mass enhancement factor works outyg +a*)V1+a*3mc. (In these expressions=eEqyq/mco
for both polarizations. For circular polarization this is just
1 1 the radiated power divided byc, with m=my,. For linear
= = 0. (1) polarization this is not the case, but the correct acceleration
(Ly)ime  (1/Y0)phase is obtained if we account for the fact that the electron’s total

radiated momentum is nonzero, unlike for circular polariza-
The wave envelope is assumed constantpirso that the tion [5]. That is, the total transfer of momentum from the
averages are well-defined. Variation in the wave envelopavave along the wave axisis P ,4/c+ M, whereP 4is the
causes a ponderomotive force, reviewed below. total radiated power and, is the rate ofk momentum
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radiated. The correct average radiation acceleration is thus Above we focused on the radiation force on a single par-
obtained from conservation of energy and momenifim ticle in a strong wave; we now digress to consider the effects
drifting electron is assigned momentumy,v4. However, of this force on a plasma of charged particles. In laboratory

there is naa priori reason for this assignment without the useexperiments, the pulse length is sufficiently short that it is
of Eq. (2). often appropriate to consider the electrons as independent for
The average radiation force can be defined as the requirafle |ength of the pulse, and then to consider collective effects

constant force to balance the above acceleratibpy  resulting from the modification of the particle distribution in

=MYoArag. The radiation force from a blackbody source of phase space by the pulse. In astrophysical situations, how-
intensity | and temperaturd is ever, and for some current and future experiments, it is nec-
8l 106262 essary to co_nsider how t_he collective be_hqvior of particles_is

i 5( + s 2)_ (6) qhanged while th_ey are |n.the wave..Thls is much more dif-

3mc mm-c kgT ficult than the single-particle behavior would lead one to

believe. The radiation force on a single particle moving in a
It may be useful to clarify the differences between thewaye will be unaltered as long as the other forces acting on
radiation force calculated above and the longitudinal pontne particle are much weaker than the wave, which is true for
deromotive force. Changes in the envelope of a plane wavge Coulomb forces from other particles at reasonable densi-
cause a ponderomotive force, which consemey—p, and a5 and also for the radiation fields from other particles os-
is directed forwa_rd Wh_en the wave IS rising and b""Ck\’v‘"‘rdciIlating in the wave. Fundamental changes in the collective
when the wave is falling. That this force consenveSy  popavior of the plasma are expected because, for a strong

Px can be seen f_rom the_ e_xact solution for motion in awave, the radiation field produced by a particle, which falls
plane wave neglecting radiatidd]. (There are also trans- ) : P ,
; ) s off asr~*, dominates the™ < Coulomb field at a rather short
verse ponderomotive forces in real beams arising from the

finite spot size; these have a different character and are n(gi{'stance, and this radiation field oscillates on the fast time

discussed here. Transverse ponderomotive forces are imposr(—:ale of the wave. The behavior of a plasma of particles in a

tant in a number of real-world situations; the reason they ar§!f0Nd wave interacting through radiation in addition to Cou-
not discussed here is that a transverse ponderomotive ford@MP fields is a formidable problem, which is likely to ex-
occurs when the wave is not a plane wave, but the guiding?iPit new types of screening and collective modes.
center picture is only rigorously correct for a plane wave. It NOW we turn to consider the second problem mentioned
seems likely that as long as the percentage faliatfa over in the opening: the destruction of the enhanced-mass picture
a wavelength in the transverse direction is much less thawhen strong constant electromagnetic fields are added to the
unity, the guiding-center picture with a transverse ponderoplane wave. It will be shown that for one typical field con-
motive force will be a good description, but this can prob-figuration(i.e., one without special symmetries giving rise to
ably only be demonstrated by numerical calculation, unlikeintegrability), the breakdown of the enhanced-mass picture is
the case of the longitudinal ford8].) The radiation force consistent with the analytical predictions [#] and associ-
does not conservecy—p, and always acts in the forward ated with the onset of stochasticity over a wide range of
direction. Treating an electron in a plane wave as arbeam intensity. An example of an integrable configuration is
enhanced-mass particle acted upon by ponderomotive anrgh applied magnetic field parallel to the wave gfig]. The
radiation forces gives a simple and accurate description ofalue of the enhanced-mass picture is that, even when the
single-particle behavior in the classical regime. motion cannot be solved exactlgs shown below by numeri-
The reader may wonder why the radiation field causingca| computation of Liapunov exponehtthe enhanced-mass
the above force was not studied in detail. The instantaneoysictyre predicts the motion in the quasiperiodic regime even
force on the electron is given in the Landau approximationy,, 51 a5 well as the boundary between quasiperiodic be-
by Eg. (3), which is equal and opposite to the rate of mo-y,,,iqr and chaotic behavior. In the following the wave wil
mentum carried away calculated by Sarachik and SchappelS taken to have constant amplitude and the radiation force

[5] The change In motlon.from Fhe rad|alt|on. force thenwill be neglected. For definiteness consider adding a constant
causes changes in the radiated fields, which in turn cause

further changes in the electron motion, and so on and sB'agnetic fieldB=Bz to a linearly polarized waveh,(¢)
forth. The idea of the Landau approximation is that this ex-traveling in thex direction. Thenp, is constant and we take
pansion around the original motion and fields can be trunp,=0 so that the electron motion is confined to #yeplane.
cated if the radiation force is much smaller than the originalFor small wave strengtl,,=eE/mcw the motion can be
force producing the radiation. In essence, there are indeeghalyzed perturbatively because the equations of motion are
changes in the radiated fields due to the motion in the radiarearly linear{13].

tion force, but these are sufficiently small that it is appropri- When a,, is of order unity, the equations are strongly
ate to take the radiated fields as the fieldg5df centered on nonlinear and new phenomena appear. However, the motion
the electron position. Constructing a classical electron modes still simple fora,,>1 as long as the applied magnetic field
which is consistent even when the radiation force is as strong not too strong. In the derivation of the equations for the
as the original force is a deep challenge. However, the physimotion of the guiding center, it was necessary to assume
cal appropriateness of the Landau approximation for relaa,=eB/mcow=w./w<1, i.e., the electron is far from reso-
tively weak radiation forces is shown by the correct resultsnance. Figure 1 shows a typical trajectory when the
obtained for radiation damping in accelerators and mangnhanced-mass picture is applicable: the electron executes
other problems. fast oscillations in the wave, while its guiding center makes a
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FIG. 1. Typical electron cyclotron motion with,=1.5, a,

=0.02, Bz, andk||x. , , , _ o
FIG. 2. Surface of section showing trajectories from six differ-

. o L ) _ent initial conditions witha,,=0.1, a,=0.18.

slow orbit in the magnetic field. The relativistic nonlinearity

in the equations of motion will be shown to destroy integra- a2y2+ (agx—a,, siny)?

bility, but only for w;/w~1. y=1+
With no wave present, the gyrocenter of the electron mo- 2(1+apy)
tion (Xo,Yo)=(x+p,/eBy—p,/eB) (with m=c=1) is (8)
constant in time. The electron still has a well-defined gyro- dx vy dy apx—aysiny
center when the wave is added, which reduces to the normal dn 1+ ayy | dp - ltay

gyrocenter when the wave strength is zero and is exactly

constant for an arbitrarily strong wave. Its coordinates are These equations are integrated numerically for various val-
ues ofay,a,,, and the initial condition(),Y(70)-
Because the equations of moti@®) are periodic iny, it
PyteA(£) y— Pxtl-y @) is convenient to plot the electron’s(,{y) coordinates after
eB eB /)’ each period to study the long-time behavior. This gives an
area-preserving map of the plane to itself. Figure 2 shows a
typical surface of section obtained in this way. For low val-
Such a gyrocenter exists for any direction of the magnetiaies of the electron initial energy, the motion is quasiperiodic
and nearly circular, while for large values of the initial en-
- A ergy the motion is chaotic, as demonstrated by numerically
—bX[p+eA(&)+1—yk]/eBy. _ calculated Liapunov exponentsig. 3. As time increases,
Now consider again the particular cakéx,Aly,B|z.  the largest exponent for trajectories beginning on points
Taking p,=0 confines the motion to they plane so that D,E,F remains positive, indicating that neighboring initial
phase space is five-dimensiofipbsition (x,y), momentum  points separate exponentially rapids]. The electron’s ini-
(px,py), and timet]. The constant$?) reduce the effective tial energy affec_ts the character of the motion becm&mn
dimension of phase space by 2. Choosing particular valugde much larger in the rest frame of an electron than in the lab
Ky=K,;=0 of the constants corresponds to shifting the gy-

rocenters of all possible trajectories to the origin, removing 0_025?/\
two translational degrees of freedom. After this shjft,and
py are no longer independent coordinates but rather functions 0.02 F
of x andy determined by Eq(7).
The existence of two constants of motion reduces the ef- 1 0'0157Dﬁ<

fective phase space in this particular case from five dimen- 0.01
sions to three. Hamiltonian motion in a two-dimensional c
phase space is always integrable, so that three-dimensional 0.00°1B
motions such as the driven pendulum and the Chirikov-
Taylor problem[14] are the simplest that can exhibit nonin-
tegrable behavior. The equations of motion after a change to 10910 Noerioas

the independent variablg=t—x/c and introducing dimen- FIG. 3. Numerical largest Liapunov exponent calculated at

S|0nless.parameteai,= wc/w,ay=eE/mcw, and amono-  ierent times for trajectories starting on the six labeled points in
chromatic waveA(#n) are (w=m=c=1) Fig. 2.

(Kx, Ky)=| x+

field BOB and any polarization of the Waveé=r—(r-6)f)
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frame if the electron has a large initial velocity. To eliminate
this effect, the initial electron drift velocity is fixed at @.5
henceforth.

The enhanced-mass description predicts that the guiding
center of the electron moves in a circléxy(t),yq(t))
=g+ (vq/Q) sinOt,yg+(vg/Q) cosQt), with vy4=0.5
and Q=wC/y0'yd=abw\/l—vdZ/y0. At the end of each
wave periodXgy(t) andyg(t) are compared with the actual
location of the guiding center calculated from E8). As a

10°
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dimensionless measure of the error, we use the normalized 10! 100 10!
sum of squares error over a cyclotron orbit: a,=eElmco
Q 2 Otp<2w ) it .
_ 2 . 4. umerical values anaay, 1or variousa,, as part o
E -2 D [F(t)—r.dD)]2 ) FIG. 4. N | valueay™" andaj f w as part of
9 1oy o(ty—Xg1c)=2n7 ge a schematic phase diagram. Error bars are shownfdrecause it

is difficult to determine precisely when the largest Liapunov expo-
The error is found to be quite smal(.<0.01) for all val-  nent becomes positive.

;es gav;nitrl;gsegsarzg%qg tgagrj ((a)r.oljln.itFo(;neacPe;/s#fS gf ear resonance phase from the strong stochasticity phase can
W m9e y y onég be defined by the destruction of the last invariant torus at

certain critical field: as a thresholq we defiag“(aw) as the large energy, since in three dimensions such a torus bounds
value ofa, whereg .= 0.01. ch'?sster?t with the predictions the energy of trajectories contained within it. Rax has previ-
of the enhanced-mass pictueg," remains nonzero for large ously proposed that the stochastic motion of electrons in
a, (and in fact increases slightly with,). Even though high  muiltiple plane waves may give rise to high-energy cosmic
a,, makes Eqgs(8) quite nonlinear, the motion remains qua- rays [16]. The considerations above indicate that a single

siperiodic and nearly circular foib<ag”t. plane wave, together with a sufficiently strong magnetic
As a, increases abova", the trajectory with initial ve- field, is sufficient. _
locity 0.5c becomes chaotithas a positive Liapunov expo- ~ We verified that approximately the same boundary for the

nend at some value . For largea,,, abovea) the motion guiding-center description applies when the applied wave Is
is strongly chaotic and the electron energy fluctuates WiIdIy.a superposition of two or three a_pphed frequenc!es..lt seems
This differs from nearly linear resonance at snggjlin that natural to gonjecture that t'h.e gwdmg-penter region in F.'g' 4
no tuning of frequencies is necessary for energy gain an Iso describes waves of finite bar_1dW|dth and other orienta-
hence energy gain is not limited by relativistic detuning. Fig- lons of the magnetic fieldexcluding the integrable case
ure 4 shows numerical curves faf™ anda; as part of a Bllk).

schematic phase diagram. The two curves are adjacent over The author wishes to thank Deepak Dhar for many helpful
four decades of beam intensity. The dotted limédnich was  conversations. This work was supported by a U.S. Fulbright
not calculated and is only schematseparating the quasilin- grant and financial assistance from the Hertz Foundation.
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