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Nonlinear radiation pressure and stochasticity in ultraintense laser fields

Joel E. Moore
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 10 August 1998!

The drift acceleration due to radiation reaction for a single electron in an ultraintense plane wave (a
5eE/mcv;1) of arbitrary wave form and polarization is calculated and shown to be proportional toa3 in the
high-a limit. The resulting average drift acceleration is independent of polarization, even though the average
radiated power is polarization-dependent. The cyclotron motion of an electron in a constant magnetic field and
an ultraintense plane wave is numerically found to be quasiperiodic even in the high-a limit if the magnetic
field is not too strong, as suggested by previous analytical work. A strong magnetic field causes highly chaotic
electron motion and the boundary of the highly chaotic region of parameter space is determined numerically
and shown to agree with analytical predictions.@S1063-651X~99!06102-4#

PACS number~s!: 52.40.Nk, 52.35.Mw
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It has been known for many years that qualitative chan
occur in the behavior of an electron moving in an elect
magnetic plane wave when the dimensionless strengta
5eE/mcv is of order unity. Recent advances in laser pu
compression and amplification@1# have made it possible to
attain such ultraintense waves in the laboratory and led
new investigations of their properties. One important eff
is that an electron moving in an ultraintense electromagn
plane wave and also subjected to slowly varying ‘‘bac
ground’’ electric or magnetic fields behaves approximat
like a particle of enhanced mass mg0

5mA11e2^AmAm&/m2c4 drifting in the background fields
Here A is the vector potential andg05A11a2/2 for a lin-
early polarized monochromatic wave. The fast motion in
wave can be rigorously averaged over if the backgrou
fields are sufficiently weak and the plane wave is not
strong that pair creation effects become significant. Exc
for some brief remarks on collective behavior at the end,
paper considers the behavior of a single electron.

This enhanced-mass approximation has a long history
ing back at least to the work of Volkov@2#. In a previous
paper its validity was shown for sufficiently weak and slow
varying background fields~note that a slow change in th
wave envelope can be treated for this purpose as a ‘‘ba
ground field,’’ causing the standard longitudinal ponderom
tive force on an oscillating electron! @3#. In the course of that
derivation, general equations were found for the respons
the electron guiding center~i.e., the center of the electron’
fast motion in a harmonic wave! to an impulse. The first par
of this paper uses the guiding-center equations to calcu
the drift acceleration of an electron in a plane wave due
the radiation damping and reaction forces. This results
generalization for strong classical waves of the accelera
due to radiation damping. To our knowledge the correct
erage accleration of an electron in a strong wave due to
diation reaction has not previously been obtained. In a str
wave, the variation of the electron effective massmg over
the wave orbit must be properly accounted for to obtain
correct drift acceleration. The average drift acceleration
the quantity of greatest interest because experiments an
trophysical phenomena typically involve many wave perio
The guiding-center equations provide the tools to carry
PRE 591063-651X/99/59~2!/2281~5!/$15.00
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the averaging and determine the motion of electrons un
the ~previously calculated! instantaneous Lorentz-Dirac ra
diation force@4,5#. We give the restrictions on field strengt
and frequency for our result to be applicable below.

The second part of this paper considers the destructio
the enhanced-mass behavior and transition to stochastici
the strength of the background fields is increased to vio
the field-strength conditioneBback/mcvwave!1 necessary
for the enhanced-mass derivation. The breakdown of
enhanced-mass picture is shown numerically to predict
onset of stochasticity even for very strong wave intens
Both the nonlinear radiation acceleration and the stochas
ity are expected to be significant in astrophysical situatio
and the first effect may well be visible in laboratory expe
ments with ultraintense laser pulses.

Classical calculations are valid for higha as long as the
discrete photon energy\v!mc2 and the amplitude for QED
processes such ase1e2 pair creation is small (eE\/mc
!mc2) @6#. The classical high-a regime includes a numbe
of existing and proposed accelerator designs, such as
plasma wakefield and beat-wave accelerators@7#, and non-
linear multiphoton effects such as Compton-like scatter
@8#. Lasers used in the National Ignition Facility and simil
inertial fusion projects havea;1 so strong-field effects are
significant. Many astrophysical problems also involve higha
radiation sources, and in particular consequences of stro
wave radiation damping are discussed in@9#.

The motion of an electron in a plane wave of arbitra
intensity is integrable both classically and within the Dir
equation. This occurs because a third conserved qua
mcg2px exists in addition to the two transverse generaliz
momenta. Hereg is the electron Lorentz factor andpx is the
component of electron momentum along the wave axis.
cluding radiative effects or adding additional fields genera
violates this conservation. The result of the scattering of
wave by the electron is a force on the electron along
wave axis, which has the formF52e4^E2&/3m2c4 for weak
plane waves. In the high-a regime the electron radiates muc
more strongly (}a4 rather thana2 in the low-a limit ! and
radiates high harmonics of the wave frequency@4,5#. Some
care must be taken to calculate the radiation acceleration
a strong plane wave correctly, since the electron can h
2281 ©1999 The American Physical Society
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2282 PRE 59JOEL E. MOORE
differentg and hence different inertia at different times in
motion in the plane wave. Another way to understand thi
that the conservation of momentum along the wave a
which is sufficient to give the time-averaged acceleration
a weak wave~equal and opposite the averaged radiat
force!, does not fix the acceleration for a strong wave b
cause the electron momentum along the wave axis i
strong wave is not constant. It will be seen that naive c
servation of momentum is satisfied if a drifting electron
attributed average momentummg0vd , wheremg0 is the en-
hanced mass andvd is the drift velocity, assumed nonrela
tivistic.

Previous work on the acceleration due to radiation re
tion in a strong wave has included numerical studies@10,6#
as well as rather complicated exact solutions to the Lore
Dirac equation~in the Landau approximation@4#! in special
cases, such as monochromatic linearly and circularly po
ized waves@11#. For an extremely strong wave there a
well-known difficulties in treating the electron motion cla
sically, due to the existence of acausal ‘‘runaway’’ solutio
to the Lorentz-Dirac equation. The Landau approximati
which is valid when the radiation reaction force is mu
smaller than the other forces on the electron~as is the case
for all currently available laser field strengths!, consists of
calculating the radiation force from the instantaneous ac
eration in the absence of the radiation force. The work d
cussed here is independent of the various attempts to fi
consistent classical description of strong radiation reac
forces ~see references in@6#! when the Landau approxima
tion is not valid.

For laser fields in the laboratory and in all but the mo
exotic astrophysical situations, radiation reaction can
treated as a perturbation and the Landau approximatio
valid. In this regime, the guiding-center formalism gives
simple result for the drift velocity, the quantity of primar
interest, valid for an arbitrarily polarized, polychromat
wave, even though the electron motion is highly relativis
The two approximations involved are the Landau approxim
tion and the guiding-center approximation that the chan
in the drift velocity over a single wave period are nonre
tivistic and hence add linearly, which is very well satisfi
for the radiation reaction problem in the classical regime

The motion in a wave alongx̂ with dimensionless vecto
potential A(t2x/c)5A(h) is given in the ‘‘drift frame’’
where the electron has zero average velocity bypi5
2mcAi for the transverse components, andpx5mc(A2

2^A2&)/2g0 , with ^& indicating averaging overh and g0
2

511^A2&. There are several equivalent expressions forg0
for the electron trajectory in the wave with no external
radiative forces:g0 is equal to the constant of motiong
2px /mc in the frame where the electron is at rest on av
age. Hencedh/dt512vx /c5g0 /g in this frame, and the
mass enhancement factor works out tog0 :

1

^1/g& time
5

1

^1/g0&phase
5g0 . ~1!

The wave envelope is assumed constant inh so that the
averages are well-defined. Variation in the wave envel
causes a ponderomotive force, reviewed below.
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The radiation reaction force from scattered photo
causes the drift velocity~the velocity of the drift frame! to
change in time. The change in drift velocity for an appli
impulse requires some calculation@3# which we will not re-
peat here: the idea is to consider the infinitesimal Lore
transformation required to restore the electron to its us
point on the wave trajectory. It turns out that unexpec
terms arise in the equation for the drift velocity, and th
consequently the instantaneous drift acceleration from an
plied force is not necessarily in the direction of the appli
force. For the radiation reaction problem in a weak wave
is these terms which give the usual radiation force along
wave axis, even though the instantaneous radiation forc
always perpendicular to the wave. The drift velocity comp
nent along the wave axis changes for an applied forceF ~in
addition to the force from the wave! according to@3#

dvd
x

dt
5

Fx

mg
2

Fyvy

mcg0
2

Fzvz

mcg0
. ~2!

The causality problems with the Lorentz-Dirac classical
diation force@6# do not appear in the Landau approximatio
which is valid if the radiation force is a small perturbation o
the motion causing the radiation. The instantaneous radia
force on the electron is@4,5#

Fi5
2e2

3mc3H d

dtS g
dpi

dt D2
v ig

2

mc2F S dp

dt D
2

2S dE

cdtD
2G J

5
2e2g0

2

3mc3 H d2pi

dh22
v ig0

2

mc2F S dp

dh D 2

2S dE

cdh D 2G J . ~3!

Upon substituting Eq.~3! into Eq. ~2!, we obtain the instan-
taneous acceleration~with respect to phase! in the x direc-
tion,

dvd
x

dh
5

2e2g0

3mc2 S dA

dh D 2

. ~4!

Now the averaging overh is simple. For a wave with inten
sity per frequency intervalI (v), the result is

K dvx

dt L 5
8pe4* I ~v! dv

3m3c5 A11
4pe2

m2c3E I ~v! dv

v2 . ~5!

The acceleration is thus independent of polarization and
phasing between different frequences, just as in the nonr
tivistic limit, but scales witha3 rather thana2 for large a
with v constant, since thenI (v)}a2.

For a linearly polarized monochromatic wave, the avera
acceleration is 2e2v2(a2/21a4/4)A11a2/2/3mc2. For
circular polarization, the result is 2e2v2(a2

1a4)A11a2/3mc2. ~In these expressionsa5eEmax/mcv
for both polarizations.! For circular polarization this is jus
the radiated power divided bym̄c, with m̄5mg0 . For linear
polarization this is not the case, but the correct accelera
is obtained if we account for the fact that the electron’s to
radiated momentum is nonzero, unlike for circular polariz
tion @5#. That is, the total transfer of momentum from th
wave along the wave axisk is Prad/c1M k , wherePrad is the
total radiated power andM k is the rate ofk momentum
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PRE 59 2283NONLINEAR RADIATION PRESSURE AND . . .
radiated. The correct average radiation acceleration is
obtained from conservation of energy and momentumif a
drifting electron is assigned momentummg0vd . However,
there is noa priori reason for this assignment without the u
of Eq. ~2!.

The average radiation force can be defined as the requ
constant force to balance the above acceleration:F rad
5mg0Arad. The radiation force from a blackbody source
intensity I and temperatureT is

F rad5
8pe4I

3m2c5 S 11
10\2e2I

pm2c3kB
2T2D . ~6!

It may be useful to clarify the differences between t
radiation force calculated above and the longitudinal p
deromotive force. Changes in the envelope of a plane w
cause a ponderomotive force, which conservesmcg2px and
is directed forward when the wave is rising and backw
when the wave is falling. That this force conservesmcg
2px can be seen from the exact solution for motion in
plane wave neglecting radiation@4#. ~There are also trans
verse ponderomotive forces in real beams arising from
finite spot size; these have a different character and are
discussed here. Transverse ponderomotive forces are im
tant in a number of real-world situations; the reason they
not discussed here is that a transverse ponderomotive f
occurs when the wave is not a plane wave, but the guid
center picture is only rigorously correct for a plane wave
seems likely that as long as the percentage falloffDa/a over
a wavelength in the transverse direction is much less t
unity, the guiding-center picture with a transverse ponde
motive force will be a good description, but this can pro
ably only be demonstrated by numerical calculation, unl
the case of the longitudinal force@3#.! The radiation force
does not conservemcg2px and always acts in the forwar
direction. Treating an electron in a plane wave as
enhanced-mass particle acted upon by ponderomotive
radiation forces gives a simple and accurate description
single-particle behavior in the classical regime.

The reader may wonder why the radiation field caus
the above force was not studied in detail. The instantane
force on the electron is given in the Landau approximat
by Eq. ~3!, which is equal and opposite to the rate of m
mentum carried away calculated by Sarachik and Schap
@5#. The change in motion from the radiation force th
causes changes in the radiated fields, which in turn ca
further changes in the electron motion, and so on and
forth. The idea of the Landau approximation is that this e
pansion around the original motion and fields can be tr
cated if the radiation force is much smaller than the origi
force producing the radiation. In essence, there are ind
changes in the radiated fields due to the motion in the ra
tion force, but these are sufficiently small that it is approp
ate to take the radiated fields as the fields of@5#, centered on
the electron position. Constructing a classical electron mo
which is consistent even when the radiation force is as str
as the original force is a deep challenge. However, the ph
cal appropriateness of the Landau approximation for re
tively weak radiation forces is shown by the correct resu
obtained for radiation damping in accelerators and m
other problems.
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Above we focused on the radiation force on a single p
ticle in a strong wave; we now digress to consider the effe
of this force on a plasma of charged particles. In laborat
experiments, the pulse length is sufficiently short that it
often appropriate to consider the electrons as independen
the length of the pulse, and then to consider collective effe
resulting from the modification of the particle distribution
phase space by the pulse. In astrophysical situations, h
ever, and for some current and future experiments, it is n
essary to consider how the collective behavior of particle
changed while they are in the wave. This is much more d
ficult than the single-particle behavior would lead one
believe. The radiation force on a single particle moving in
wave will be unaltered as long as the other forces acting
the particle are much weaker than the wave, which is true
the Coulomb forces from other particles at reasonable de
ties and also for the radiation fields from other particles
cillating in the wave. Fundamental changes in the collect
behavior of the plasma are expected because, for a st
wave, the radiation field produced by a particle, which fa
off asr 21, dominates ther 22 Coulomb field at a rather shor
distance, and this radiation field oscillates on the fast ti
scale of the wave. The behavior of a plasma of particles
strong wave interacting through radiation in addition to Co
lomb fields is a formidable problem, which is likely to ex
hibit new types of screening and collective modes.

Now we turn to consider the second problem mention
in the opening: the destruction of the enhanced-mass pic
when strong constant electromagnetic fields are added to
plane wave. It will be shown that for one typical field co
figuration~i.e., one without special symmetries giving rise
integrability!, the breakdown of the enhanced-mass picture
consistent with the analytical predictions of@3# and associ-
ated with the onset of stochasticity over a wide range
beam intensity. An example of an integrable configuration
an applied magnetic field parallel to the wave axis@12#. The
value of the enhanced-mass picture is that, even when
motion cannot be solved exactly~as shown below by numeri
cal computation of Liapunov exponents!, the enhanced-mas
picture predicts the motion in the quasiperiodic regime ev
for a.1 as well as the boundary between quasiperiodic
havior and chaotic behavior. In the following the wave w
be taken to have constant amplitude and the radiation fo
will be neglected. For definiteness consider adding a cons

magnetic fieldB5Bẑ to a linearly polarized waveAy(j)
traveling in thex̂ direction. Thenpz is constant and we take
pz50 so that the electron motion is confined to thexy plane.
For small wave strengthaw5eE/mcv the motion can be
analyzed perturbatively because the equations of motion
nearly linear@13#.

When aw is of order unity, the equations are strong
nonlinear and new phenomena appear. However, the mo
is still simple foraw.1 as long as the applied magnetic fie
is not too strong. In the derivation of the equations for t
motion of the guiding center, it was necessary to assu
ab5eB/mcv5vc /v!1, i.e., the electron is far from reso
nance. Figure 1 shows a typical trajectory when t
enhanced-mass picture is applicable: the electron exec
fast oscillations in the wave, while its guiding center make
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2284 PRE 59JOEL E. MOORE
slow orbit in the magnetic field. The relativistic nonlineari
in the equations of motion will be shown to destroy integ
bility, but only for vc /v;1.

With no wave present, the gyrocenter of the electron m
tion (x0 ,y0)5(x1py /eB,y2px /eB) ~with m5c51) is
constant in time. The electron still has a well-defined gy
center when the wave is added, which reduces to the no
gyrocenter when the wave strength is zero and is exa
constant for an arbitrarily strong wave. Its coordinates ar

~Kx ,Ky!5S x1
py1eAy~j!

eB
,y2

px112g

eB D . ~7!

Such a gyrocenter exists for any direction of the magn

field B0b̂ and any polarization of the wave:r c5r2(r•b̂)b̂

2b̂3@p1eA(j)112g k̂#/eB0 .

Now consider again the particular casek̂i x̂,Ai ŷ,Bi ẑ.
Taking pz50 confines the motion to thexy plane so that
phase space is five-dimensional@position (x,y), momentum
(px ,py), and timet#. The constants~7! reduce the effective
dimension of phase space by 2. Choosing particular va
Kx5Ky50 of the constants corresponds to shifting the g
rocenters of all possible trajectories to the origin, remov
two translational degrees of freedom. After this shift,px and
py are no longer independent coordinates but rather funct
of x andy determined by Eq.~7!.

The existence of two constants of motion reduces the
fective phase space in this particular case from five dim
sions to three. Hamiltonian motion in a two-dimension
phase space is always integrable, so that three-dimens
motions such as the driven pendulum and the Chirik
Taylor problem@14# are the simplest that can exhibit noni
tegrable behavior. The equations of motion after a chang
the independent variableh5t2x/c and introducing dimen-
sionless parametersab5vc /v,aw5eE0 /mcv, and a mono-
chromatic waveA(h) are (v5m5c51)

FIG. 1. Typical electron cyclotron motion withaw51.5, ab

50.02, Bi ẑ, andki x̂.
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ab

2y21~abx2aw sinh!2

2~11aby!
,

~8!

dx

dh
5

g

11aby
21,

dy

dh
5

abx2aw sinh

11aby
.

These equations are integrated numerically for various
ues ofab ,aw , and the initial conditionsx(h0),y(h0).

Because the equations of motion~8! are periodic inh, it
is convenient to plot the electron’s (x,y) coordinates after
each period to study the long-time behavior. This gives
area-preserving map of the plane to itself. Figure 2 show
typical surface of section obtained in this way. For low va
ues of the electron initial energy, the motion is quasiperio
and nearly circular, while for large values of the initial e
ergy the motion is chaotic, as demonstrated by numeric
calculated Liapunov exponents~Fig. 3!. As time increases
the largest exponent for trajectories beginning on poi
D,E,F remains positive, indicating that neighboring initi
points separate exponentially rapidly@15#. The electron’s ini-
tial energy affects the character of the motion becauseab can
be much larger in the rest frame of an electron than in the

FIG. 2. Surface of section showing trajectories from six diffe
ent initial conditions withaw50.1, ab50.18.

FIG. 3. Numerical largest Liapunov exponents1 calculated at
different times for trajectories starting on the six labeled points
Fig. 2.
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PRE 59 2285NONLINEAR RADIATION PRESSURE AND . . .
frame if the electron has a large initial velocity. To elimina
this effect, the initial electron drift velocity is fixed at 0.5c
henceforth.

The enhanced-mass description predicts that the gui
center of the electron moves in a circle:„xgc(t),ygc(t)…
5„x01(vd /V) sinVt,y01(vd /V) cosVt…, with vd50.5c
and V5vc /g0gd5abvA12vd

2/g0 . At the end of each
wave period,xgc(t) andygc(t) are compared with the actua
location of the guiding center calculated from Eq.~8!. As a
dimensionless measure of the error, we use the normal
sum of squares error over a cyclotron orbit:

Egc5S V

vd
D 2

(
v~ tn2xn /c!52np

Vtn,2p

@r ~ t !2rgc~ t !#2. ~9!

The error is found to be quite small (Egc,0.01) for all val-
ues of aw studied as long asab,0.04. For each value o
aw , Egc increases rapidly to order unity onceab reaches a
certain critical field: as a threshold we defineab

crit(aw) as the
value ofab whereEgc50.01. Consistent with the prediction
of the enhanced-mass picture,ab

crit remains nonzero for large
aw ~and in fact increases slightly withaw). Even though high
aw makes Eqs.~8! quite nonlinear, the motion remains qu
siperiodic and nearly circular forab,ab

crit .
As ab increases aboveab

crit , the trajectory with initial ve-
locity 0.5c becomes chaotic~has a positive Liapunov expo
nent! at some valueab* . For largeaw , aboveab* the motion
is strongly chaotic and the electron energy fluctuates wild
This differs from nearly linear resonance at smallaw in that
no tuning of frequencies is necessary for energy gain
hence energy gain is not limited by relativistic detuning. F
ure 4 shows numerical curves forab

crit and ab* as part of a
schematic phase diagram. The two curves are adjacent
four decades of beam intensity. The dotted line~which was
not calculated and is only schematic! separating the quasilin
f

3

g

ed

.

d
-

ver

ear resonance phase from the strong stochasticity phase
be defined by the destruction of the last invariant torus
large energy, since in three dimensions such a torus bou
the energy of trajectories contained within it. Rax has pre
ously proposed that the stochastic motion of electrons
multiple plane waves may give rise to high-energy cosm
rays @16#. The considerations above indicate that a sin
plane wave, together with a sufficiently strong magne
field, is sufficient.

We verified that approximately the same boundary for
guiding-center description applies when the applied wav
a superposition of two or three applied frequencies. It see
natural to conjecture that the guiding-center region in Fig
also describes waves of finite bandwidth and other orien
tions of the magnetic field~excluding the integrable cas
Bik).

The author wishes to thank Deepak Dhar for many help
conversations. This work was supported by a U.S. Fulbri
grant and financial assistance from the Hertz Foundation

FIG. 4. Numerical valuesab
crit andab* for variousaw as part of

a schematic phase diagram. Error bars are shown forab* because it
is difficult to determine precisely when the largest Liapunov exp
nent becomes positive.
n.
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